** Pi Mu Epsilon Meetings**

NOVA documentary “The Proof” (pdf)

**Jo Howard**

Special Guest (pdf)

**Jo Howard**

**Relating Mathematical Studies to Life Applications** (pdf)

Jo Howard graduated from the University of Mississippi with degrees in mathematics in 1967. She has since worked on applying mathematics to a number of fields including: designing trajectories for Boeing that put a man on the moon in 1969, programming the space simulator in Houston, Texas, and data management systems in the oil and gas industries.

**William Staton**

University of Mississippi

**Powerful Numbers** (pdf)

We will call a positive integer “powerful” if for every prime p, if p divides n, then p^2 divides n. That is, every prime in the factorization of n appears to at least the second power. We will discuss some algebraic properties of the set of powerful numbers to emphasize an important property of primes. Then we will show that there are infinitely many pairs of consecutive powerful numbers, such as 8 and 9.

**Eleanor Anthony**

University of Mississippi

**PME Induction and Student Talk** (pdf)

Come and join us as we welcome new members to the Pi Mu Epsilon Honor Society and elect officers for 2015. Eleanor Anthony will give a short talk on her undergraduate mathematics research.

**Samuel Lisi**

University of Mississippi

**Morse Theory on Surfaces** (pdf)

Have you ever wondered how many holes your doughnut has? We will see how calculus can tell us something about the topology of a surface.

**Joshua Adam Gray**

University of Mississippi

**Metadata, Social Networks, and Paul Revere** (pdf)

Dr. Kieran Healy, a sociologist at Duke University, wrote an article last summer discussing how “metadata” from colonial America could have been used to identify Paul Revere as a key figure of the American Revolution before it began. Dr. Gray will discuss the graph theory underlying some of these ideas and how it pertains to modern social networks.

**Sam Watson**

Massachusetts Institute of Technology

**Schramm-Loewner Evolutions** (pdf)

Dr. Watson will explain in non-technical terms why the study of “conformally invariant two-dimensional statistical physics models” is compelling and beautiful.

**Amanda Hall**

University of Mississippi

**The Tutte Polynomial Formula for the Class of Twisted Wheel Graphs** (pdf)

Amanda will talk about her SMBHC Senior Thesis this Thursday. Come to here about her research and the research process.

**James Reid**

University of Mississippi

**A Beautiful Mind, Equilibria, and Traffic** (pdf)

We will explore the life and works of John Nash, the subject of the popular movie *A Beautiful Mind*. In particular, we will discuss the concept of Nash-Equilibria and its implications to the flow of vehicular traffic.

**Organizational Meeting:** Induction of New Members and Officer Elections (pdf)

**Caroline Turnage-Butterbaugh**

University of Mississippi

**Gaps Between Primes** (pdf)

Caroline will talk about some recent exciting results in number theory, starting with Yitang Zhang’s theorem on prime gaps, the Polymath project that grew from it, and the Maynard-Tao result that improved upon this work. She will also talk about a conjecture of Erdös and Turán that she proved recently as joint work with William Banks and Tristan Freiberg from the University of Missouri.

**Sooyeon Lee, Catherine Putnam, Stephan Roberts, Christopher Schwanke, Caroline Turnage-Butterbaugh**

University of Mississippi

**Graduate Studies in Mathematics** (pdf)

Are you considering going to graduate school in mathematics? Do you wonder what graduate school in mathematics is like? Do you have questions about applying to graduate schools? If you’ve answered yes to any of these questions, come ask a panel of five of the math department’s graduate students anything you’d like to ask about graduate school!

**Sandra Spiroff, Jonathan Broom, Travis Dirle, Adam Flaherty, and Thomas Naugle**

University of Mississippi

**“There’s ca$h in math”-an overview of the SMILE program at LSU** (pdf)

Come hear about the summer SMILE program at Louisiana State University and how you can earn a stipend while learning mathematics, for example, Jordan decomposition and the Z-transform, or associating graphs to commutative rings. An overview of the program will be given by Dr. Spiroff, followed by the students briefly describing their summer projects.

**Sam Cole**

University of Mississippi

**“The Hardest Logic Puzzle Ever” and Logical Connectives** (pdf)

In 1986 logician George Boolos published “The Hardest Logic Puzzle Ever”, a variation on the classic “Knights and Knaves” puzzle. Boolos’ puzzle is as follows: “Three gods A, B, and C are called, in no particular order, True, False, and Random. True always speaks truly, False always speaks falsely, but whether Random speaks truly or falsely is a completely random matter. Your task is to determine the identities of A, B, and C by asking three yes-no questions; each question must be put to exactly one god. The gods understand English, but will answer all questions in their own language, in which the words for yes and no are da and ja, in some order. You do not know which word means which.” In order solve this puzzle the logical connectives encountered in mathematics are needed to construct questions. The properties of these connectives and the solution to many variants of this problem will be presented.

**Przemo Kranz**

University of Mississippi

**Octonions-or how many square roots of -1 are there?** (pdf)

As complex numbers are constructed out of real numbers, so quaternions are constructed out of complex numbers. Quaternions, in turn, are the building blocks of a still more “complex” set of objectsoctonions. Octonions form an eight dimensional normed division algebra, a basis of which contains seven elements whose squares are all -1.

**Erwin Miña-Diaz**

University of Mississippi

**Inversion in Planar Geometry** (pdf)

Inversion, or reflection about circles, is a transformation that generalizes the idea of reflection (mirror image) about a line. Inversion has several beautiful properties. For instance, lines and circles are transformed into lines and circles as well, and angles between curves are preserved under inversion. In this talk, we shall introduce this concept, discuss some of its most basic properties, and apply it to solve some problems in planar geometry.

**Brad Cole**

University of Mississippi

**Drunk Cops and Robbers: How To Catch A Thief… Slowly** (pdf)

The game of Cops and Robbers can be played out, in a mathematical sense, on a graph—i.e., on a set of vertices and edges, like a square, star, hexagon, or other figure. In the game, the players designated as “cop” and “robber” take turns, respectively, moving from vertex to vertex along graph edges. Should the players ever occupy the same vertex at the same time, the robber is captured and the cop wins. The theory behind these graph pursuit-evasion games has been well studied. In 2011, a version of this game was investigated where the robber is moving randomly; a “drunk” robber. This talk will explore the reversed role: the cop is now “drunk” while the robber moves perfectly. The expected capture time will be demonstrated for the simplest 1-cop win graphs (paths), 2-cop win graphs (cycles) and, time permitting the k-d-regular tree.

If this talk were a movie, then the plot would be: How would the movie Taken (or Taken 2, the sequel) work out if Liam Neeson’s character had been drinking constantly?

**Christopher Schwanke, Daniel Chausse, Stephan Roberts, Michael Azlin, Caroline Turnage-Butterbaugh, Lisa Ewell, and Lynsey Cargile**

University of Mississippi

**Hilbert’s Hotel: A Play** (pdf)

Hilbert’s Hotel is very different than other hotels, for it has infinitely many rooms! Come see the very strange things that can occur when dealing with an infinite number of objects. Things like the sign in front of the hotel, which reads: “No Vacancy – Rooms Available!”

** Sandra Spiroff, Jonathan Broom, Ben Moore, and Lindsay Pittman**

University of Mississippi

**“I Know What You Did Last Summer” – an overview of the SMILE (Summer Math Integrated Learning Environment) program at LSU** (pdf)

Are you interested in earning a summer stipend while learning some new and interesting mathematics? Then this meeting is for YOU. We will be highlighting the SMILE program at Louisiana State University and how you can apply for summer 2013. In particular, three Ole Miss students will give a brief discussion of their projects and experiences in Baton Rouge.

**William Staton**

University of Mississippi

**Gaussian Integers and Rational Tangents of Rational Angles** (pdf)

**Caroline Turnage-Butterbaugh, Chris Schwanke, Kai Yu**

University of Mississippi

**Panel of Graduate Students to Answer Questions about Graduate School in Mathematics**

**John Dever**

University of Mississippi

**Infinitesimals, Differentials, and Derivatives in Normed Vector Spaces** (pdf)

By establishing properties of a certain class of functions, the infinitesimals, between normed vector spaces, the concepts of the differential and derivative are easily generalized to normed vector spaces. The relationship between differentials and directional derivatives will be discussed and properties such as the chain rule will be established.

**John Estes**

University of Mississippi

**Paths, Independence, and Fibonacci**

**Sandra Spiroff, Daniel Chausse, Tanya Dewland, W. Chapman Smith**

University of Mississippi

**I Know What You Did Last Summer** (pdf)

Come hear about the summer SMILE program at Louisiana State University and how you can earn a stipend while learning mathematics, for example, geometric constructions or the spread of HIV. An overview of the program will be given by Dr. Spiroff, followed by the students briefly describing their projects.

**David Benko**

University of South Alabama

**eBay and the art of bidding**

Bidding on eBay is easy – no math is involved, right? We will disprove the claim by demonstrating a scientific way of bidding. We will also offer some ideas that should be implemented at eBay to make it a better auction marketplace. Finally, we propose a fair system which is somewhere between socialism and capitalism. Whether you’re a buyer or seller or president of eBay, you must see this talk!

**Zhu Cao**

University of Mississippi

**Elementary Theory of Partitions**

**William Staton**

University of Mississippi

**A 15-minute Introduction to Extremal Graph Theory**

**Vlad Timofte**

University of Mississippi

**Repeating Atomic Configurations You May Not Be Unique!**

**Xin Dang**

University of Mississippi

**PageRank — secret of Google’ success**

**Erwin Mina-Diaz**

University of Mississippi

**Kinematics Method in Planar Geometry** (pdf)

From the study of Physics and Calculus, undergraduate students are quite familiar with Kinematics,”the theory of vectors and velocities”. In this talk we shall discuss how the concept of velocity and its properties can be used to solve some purely mathematical problems in planar geometry.

**Ryan Daileda**

Trinity University

**Factorization Beyond the Integers** (pdf)

We all know that any integer can be factored uniquely into primes. What if we look at other sets which have the same axiomatic properties as the integers? Does an analogous property hold? It turns out that the answer is ‘no,’ and we will explore how badly this can fail.

**James Reid**

University of Mississippi

**Durer’s Melencolia and Spherical Polyhedra** (pdf)

Albrecht Durer (1471-1528) is regarded by some as the preeminent artist of the Renaissance in Northern Europe. Many different interpretations of the symbols included in his engraving the “Melencolia” have been given. There have been numerous interpretations of the shape of the stone block given on the left side of the figure. We investigate whether this block can be the model of a spherical polyhedron.

**William Staton**

University of Mississippi

**Generating Functions and Integer Partitions**

**Sandra Spiroff**

University of Mississippi

**Unique Factorization and a Connection to Gambling**

**John Conlon**

Department of Economics, University of Mississippi

**Fool Asset Price Bubbles with Rational Economic Agents**