Combinatorics Seminar

Wednesday April 15th, 2015 3:50 PM-4:50 PM in Hume 331

Hamiltonian-Connected Line Graphs with Given Degree Sums

Dr. Aimei Yu

Beijing Jiaotong University

ABSTRACT In 1984, Bauer proposed the problems of determining best possible sufficient conditions on the vertex degrees of a simple graph (or a simple bipartite graph, or a simple triangle-free graph, respectively) G to ensure that its line graph L(G) is hamiltonian.

We investigate the problems of determining best possible sufficient conditions on the vertex degrees of a simple graph G to ensure that its line graph L(G) is hamiltonian-connected, and prove the following.

(i) Let G be a simple graph on n vertices and a, b be real numbers with $0 < a \leq 1$. There exist an integer N(a, b) and a finite family $\mathcal{F}(a, b)$ such that if $n \geq N(a, b)$ and if $d_G(u) + d_G(v) \geq an + b$ for any $u, v \in V(G)$ with $uv \notin E(G)$, then either L(G) is hamiltonian-connected, or $\kappa(L(G)) \leq 2$, or G can be contracted to a member in $\mathcal{F}(a, b)$.

(ii) Let G be a simple graph on n vertices. If $d_G(u) + d_G(v) \ge \frac{n}{4} - 2$ for any $u, v \in V(G)$ with $uv \notin E(G)$, then for sufficiently large n, either L(G) is hamiltonian-connected, or $\kappa(L(G)) \le 2$, or G can be contracted to W_8 , the Wagner graph.

(iii) Let G be a simple triangle-free (or bipartite) graph on n vertices. If $d_G(u) + d_G(v) \geq \frac{n}{8}$ for any $u, v \in V(G)$ with $uv \notin E(G)$, then for sufficiently large n, either L(G) is hamiltonian-connected, or $\kappa(L(G)) \leq 2$, or G can be contracted to W_8 , the Wagner graph.

This is joint work with Jianping Liu, Keke Wang and Hongjian Lai.

Keywords: hamiltonian-connected, line graphs, spanning trailable graphs, collapsible graphs, reduction.